Распределение Пуассона относится к числу дискретных, т.е. таких при которых переменная может принимать лишь целочисленные значения, включая норму с мат. ожиданием и дисперсией равной l > 0. Для генерации Пуассоновских переменных можно использовать метод точек, в основе которого лежит генерируемое случайное значение Ri , равномерно распределенное на [0, 1], до тех пор, пока не станет справедливым  При получении случайной величины, функция распределения которой не позволяет найти решение уравнения (1) в явной форме можно произвести кусочно-линейную аппроксимацию, а затем вычислять приближенное значение корня. Кроме того, при получении случайных величин часто используют те или иные свойства распределения. Распределение Эрланга характеризуется двумя параметрами: l и k. Поэтому при вычислении случайной величины в соответствии с данным законом воспользуемся тем, что поток Эрланга может быть получен прореживанием потока Пуассона k раз. Поэтому достаточно получить k значений случайной величины распределенной по показательному закону и усреднить их.  Нормально распределенная случайная величина может быть получена как сумма большого числа случайных величин распределенных по одному и тому же закону и с одними и теми же параметрами. |