, где - эквивалентная интенсивность перехода в i-ой группе переходов, заменяющей реальный переход, обладающий интенсивностью . За счет расширения числа состояний системы некоторые процессы удается точно свести к Марковским. Созданная таким образом система статистически эквивалентна или близка к реальной системе, и она подвергается обычному исследованию с помощью аппарата Марковских цепей. К числу процессов, которые введением фиктивных состояний можно точно свести к Марковских относятся процессы под воздействием потоков Эрланга. В случае потока Эрланга k-ого порядка интервал времени между соседними событиями представляет собой сумму k независимых случайных интервалов, распределенных по показательному закону. Поэтому с введением потока Эрланга k-го порядка к Пуассоновскому осуществляется введением k псевдо состояний. Интенсивности переходов между псевдо состояниями равны соответствующему параметру потока Эрланга. Полученный таким образом эквивалентный случайный процесс является Марковским, т.к. интервалы времени нахождения его в различных состояниях подчиняются показательному закону. Пример. Устройство S выходит из строя с интенсивностью , причем поток отказов Пуассоновский. После отказа устройство восстанавливается. Время восстановления распределено по закону Эрланга 3 порядка с функцией плотности  |